Laser Target Hit Sensor

Senior Design Project: May 2023

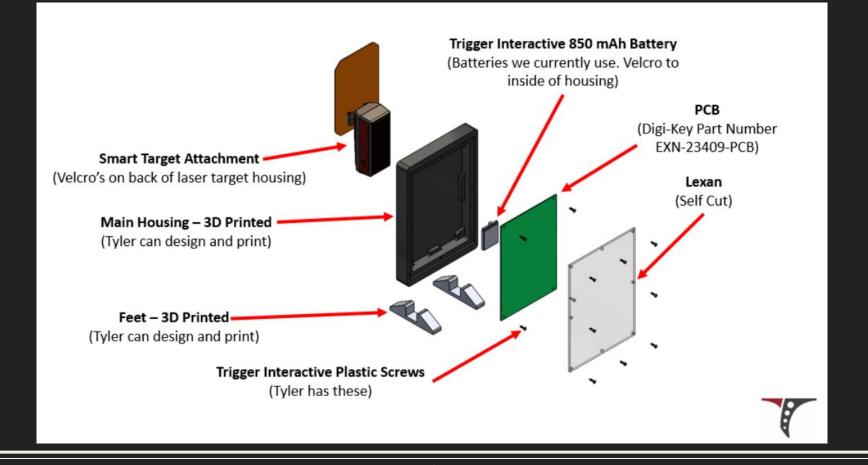
Group 49 Client - Trigger Interactive Advisor - Jaeyoun Kim Team members: Lincoln Khongmaly, Elijah Bryant, Akashkumar Patel, Sidney Stowe IV, Adam Runde, Neftali Medina

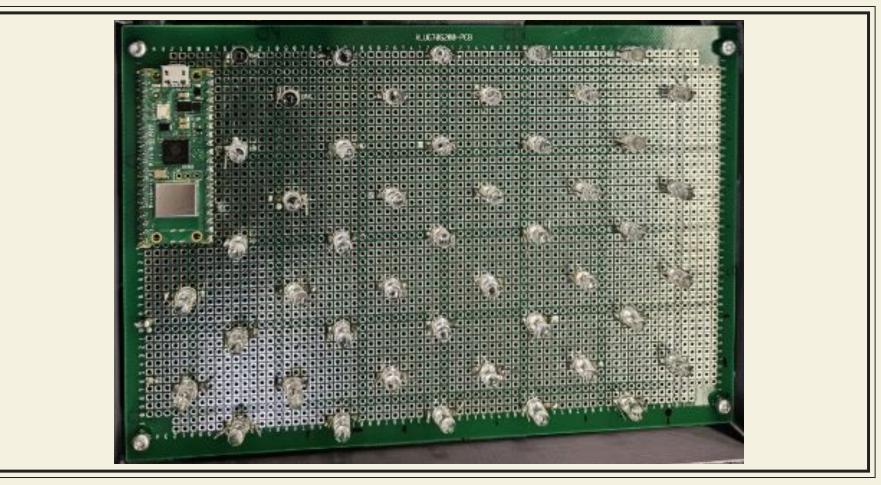
Project Overview

- Trigger Interactive wanted a modified version of their live-fire targets
 - Respond to laser fire instead of live fire(bullets).
 - > Ability to connect multiple targets to central module for demonstration
 - Interaction with the Trigger Interactive mobile app
 - Parts and production cost under \$100

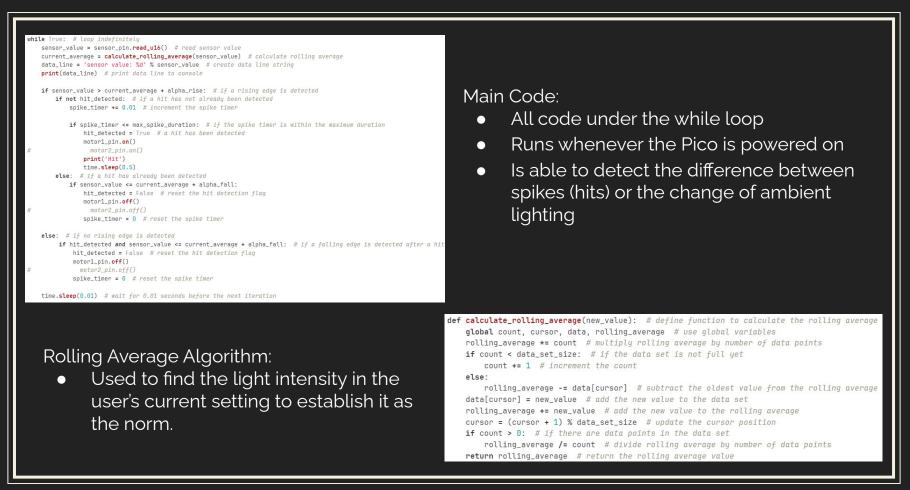
Benefits:

- 1. Laser substitute eliminates the cost of ammo
- 2. Provides a harmless alternative to firearms training with real bullets
- 3. Customers can use laser gun and targets in areas where live fire would be restricted
- 4. Ease of access at a gun range or within the user's home


Bill of Materials


Part Name	Cost (\$)	Comments
Raspberry Pi Pico	4.00	"Brain" of the module Takes in data from the sensors
Pico shim	8.25	An external feature of the Pico
Photodiodes	0.37/unit (47)	Accumulates data from laser fire
Resistors	0.10	Used in series with photodiodes and Pico input
Vibrating Motors	1.95	Used to inform the vibration detector of data
РСВ	24.7	Houses all circuit components
Jumper Wires	4.95 (75-pack)	To connect all components on the PCB
Battery	5.50	Sends power to the circuit

Additional Materials


Part Name	Comments
Acrylic Diffuser	(cost varies; avg. cost is \$5 for 8x10-inch sheet) Refracts light from laser for increased detection rate
Vibration receiver	(client's part) Reads from the motors to signal the flag
Flag Indicator	(client's part) Gets raised during laser detection
Target Housing and Stand	(client's part) Contains the PCB, diffuser, and motors inside


Hardware Features

Software Features

Accomplishments and Milestones

- 1. Transliteration of Arduino code to MicroPython for the Pico
- 2. Increased laser detection rate
 - more concentration of photodiodes and better diffusion
- 3. Extensive software threshold testing to ensure that user input is detected
 - Also to avoid false detections
- 4. Translation of laser input into vibration that the receiver can detect
- 5. Interaction with the Trigger Interactive app

Accomplishments and Milestones

- 6. Analysis of Raspberry Pi Pico power limitations
 - Voltage and current testing between Pico outputs and motors
 - Determination of Pico power output with many loads
- 7. Fully integrated a full target system with a permanent PCB board layout.
 - Soldering components and ensuring good connections
- 8. Total of 3 target modules assembled and soldered

Demonstration

Key Contributions

Lincoln Khongmaly

- Translated Arduino code to micropython for the Raspberry Pi
- Aided in soldering PCB components
- Helped test photodiodes and assemble the board

Akashkumar Patel

- Assisted with translating micropython code for Raspberry Pi
- Modified code to store necessary data to txt file for testing purposes
- Assisted with board assembly

Elijah Bryant

- Assisted in hardware development and component research
- Modified code to to improve system accuracy
- Assisted in circuit assembly and design

Key Contributions

Neftali Medina

- Soldered the jumper wires and photodiodes onto the final prototype PCB

- Aided in troubleshooting power issues with the Pico

- Helped to test the photodiode threshold and laser detection rate

Adam Runde

- Contributed to hardware acquisition and layout design
- Circuit and hardware troubleshooting

Sidney Stowe

- Contributed to hardware design and component research
- Contributed to software implementation
- -Aided in hardware troubleshooting

Challenge 1:

Translating the Arduino code into the functioning language of the Raspberry Pi

- Determining the appropriate syntax for MicroPython
- Ensuring that all aspects of the software were unchanged in the translation

- Careful analysis of each line of code
- Testing with a trial circuit to validate functionality

Challenge 2:

Determining how to supply enough voltage to the vibrating motors to indicate a detection on the client's receiver

- Power output limitations found on the Pico during testing
- One motor was hardly vibrating because of the low output current
- Many motors placed in parallel or in various input pins would not function at all

- Placing a voltage regulator at the output did not solve the power issue
- Opted to use one motor and remove the power LED to decrease losses
- Strapped motor directly to flag module for max vibration

Challenge 3:

Increasing the detection rate of the module and eliminating dead zones

- Even with diffusion, the photodiodes were unable to cover the entire board
- The digital threshold could not be lowered, since shadows and minute light changes would trigger the module

- Placed more diodes on the PCB, thus increasing the detection density
- Integrated data wave analysis in code to obtain better readings

Challenge 4:

Assembling the necessary amount of targets requested by the client.

- With only a few weeks left, the client requested that we make 3 total copies of our module
- At that time, we were still perfecting the first module

- Delegated soldering work to all team members (1 member per board)
- Checked in frequently to ensure progress was being made

Potential Future Implementations

- 1. Replacing the Pico with an IC that can output more power to its pins on a consistent basis
 - a. Pico output limitations: 51 mA total output draw; 16 mA per pin
 - b. Greater vibration of motors as a result
- 2. Substitution of motor with direct software implementation
 - a. Bluetooth serves as communication between Pico and app
 - b. Power output of Pico is not an issue
- 3. Reducing amount of photodiodes needed by improving laser diffusion
- 4. Implementation of digital potentiometer for easy sensitivity adjustment.

Summary

- Our client desired a safer and more cost-effective target system
 - Would respond to laser beams in lieu of live fire
 - Integration with client's existing live fire system
- We first conceptualized ideas for an initial design
 - Photodiodes as laser receivers
 - Acrylic material to diffuse
 - Arduino as the data receiver and interpreter
- Conducted testing to determine alteration to the design
 - Tested different acrylic shapes and textures
 - Developed code to accurately detect a hit during light emission

Summary

- Altered the design in various ways
 - > PCB in place of breadboard and Pico in place of Arduino for size reduction
 - Modified code and increasing photodiode count to improve detection
 - Vibrating motor used instead of bluetooth communication to app
- Troubleshooted issues of the prototype
 - Low power output of Pico
 - Dead zones on PCB
- Replicated design to develop three total targets for the client
 - > All targets connected via the app to form a small target practice field